Introducing Gradio Clients
WatchIntroducing Gradio Clients
WatchNew to Gradio? Start here: Getting Started
See the Release History
To install Gradio from main, run the following command:
pip install https://gradio-builds.s3.amazonaws.com/7e61de7189376dbc10042a791ae0025b8789f3ec/gradio-4.42.0-py3-none-any.whl
*Note: Setting share=True
in
launch()
will not work.
gradio.LinePlot(···)
def predict(
value: AltairPlotData | None
)
...
x
argument) and one for the y-axis (corresponding to y
).def predict(···) -> pd.DataFrame | dict | None
...
return value
Class | Interface String Shortcut | Initialization |
---|---|---|
| "lineplot" | Uses default values |
import pandas as pd
from random import randint, random
import gradio as gr
temp_sensor_data = pd.DataFrame(
{
"time": pd.date_range("2021-01-01", end="2021-01-05", periods=200),
"temperature": [randint(50 + 10 * (i % 2), 65 + 15 * (i % 2)) for i in range(200)],
"humidity": [randint(50 + 10 * (i % 2), 65 + 15 * (i % 2)) for i in range(200)],
"location": ["indoor", "outdoor"] * 100,
}
)
food_rating_data = pd.DataFrame(
{
"cuisine": [["Italian", "Mexican", "Chinese"][i % 3] for i in range(100)],
"rating": [random() * 4 + 0.5 * (i % 3) for i in range(100)],
"price": [randint(10, 50) + 4 * (i % 3) for i in range(100)],
"wait": [random() for i in range(100)],
}
)
with gr.Blocks() as line_plots:
with gr.Row():
start = gr.DateTime("2021-01-01 00:00:00", label="Start")
end = gr.DateTime("2021-01-05 00:00:00", label="End")
apply_btn = gr.Button("Apply", scale=0)
with gr.Row():
group_by = gr.Radio(["None", "30m", "1h", "4h", "1d"], value="None", label="Group by")
aggregate = gr.Radio(["sum", "mean", "median", "min", "max"], value="sum", label="Aggregation")
temp_by_time = gr.LinePlot(
temp_sensor_data,
x="time",
y="temperature",
)
temp_by_time_location = gr.LinePlot(
temp_sensor_data,
x="time",
y="temperature",
color="location",
)
time_graphs = [temp_by_time, temp_by_time_location]
group_by.change(
lambda group: [gr.LinePlot(x_bin=None if group == "None" else group)] * len(time_graphs),
group_by,
time_graphs
)
aggregate.change(
lambda aggregate: [gr.LinePlot(y_aggregate=aggregate)] * len(time_graphs),
aggregate,
time_graphs
)
def rescale(select: gr.SelectData):
return select.index
rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
for trigger in [apply_btn.click, rescale_evt.then]:
trigger(
lambda start, end: [gr.LinePlot(x_lim=[start, end])] * len(time_graphs), [start, end], time_graphs
)
price_by_cuisine = gr.LinePlot(
food_rating_data,
x="cuisine",
y="price",
)
with gr.Row():
price_by_rating = gr.LinePlot(
food_rating_data,
x="rating",
y="price",
)
price_by_rating_color = gr.LinePlot(
food_rating_data,
x="rating",
y="price",
color="cuisine",
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
)
if __name__ == "__main__":
line_plots.launch()
Event listeners allow you to respond to user interactions with the UI components you've defined in a Gradio Blocks app. When a user interacts with an element, such as changing a slider value or uploading an image, a function is called.
The LinePlot component supports the following event listeners. Each event listener takes the same parameters, which are listed in the Event Parameters table below.
Listener | Description |
---|---|
| Event listener for when the user selects or deselects the NativePlot. Uses event data gradio.SelectData to carry |
| Triggered when the NativePlot is double clicked. |